Part 2
Multi - User Consensus Security Mechanism
1) The mechanism generates a set of random numbers by the master node;
2) Divides this set of random numbers into N parts (N is an integer and greater
than 2/3 of number of all users);
3) Encrypts the N parts of random numbers with the public key of N users
separately;
4) All users decrypt this set of random numbers with their own private key;
5) When the master node receives all the correct data, it is considered that
this accounting or modification is valid.
2.4 Application Scenarios: WALTON Projects System Solutions
for the Apparel Industry
With the rapid development and integration of the Internet of things, mobile
Internet, cloud computing and other information technology, the intelligent
management of information has become a key factor in the rapid growth and
35
improvement of enterprises. As a core technology of Internet of things, the RFID is
widely used in the intelligent warehousing and logistics management, and the
apparel industry is one of the most promising fields for applying RFID technology.
Due to the apparel industry's particularity and complexity, thorny problems
exist in various links in the value chain of traditional apparel industry ,including
logistics ,warehousing, sorting business, store sales, and inventory. For example,
complex product specifications with various size, styles and rapid changes;
frequent unpacking and messy piles; slow turnover in warehousing management,
production, inventory and distribution; great reliance on staff experience for
searching needed commodity; big difference between Stock In and Stock Out;
difficulty in taking inventory;, heavy workload; FCL and one-piece warehousing
modes coexist; impossibility of tracing the clothing sources. Therefore, pasting,
embedding or implanting RFID tags on the tag of each piece of clothing can
increase supply chain management transparency and inventory turnover, reduce
the loss due to out of stock, enhance the store experience and increase consumer
satisfaction, while conducting real-time intelligent data analysis, and collecting
data to guide the garment enterprises to timely adjust their product design,
production and inventory.
2.4.1 Analysis on the Dilemma of the Traditional Apparel
Manufacturing
The 13th Five - Year Plan for China's apparel industry clearly points out that we
need to speed up the construction of flexible supply chain management system and
intelligent warehousing , logistics, and distribution system with RFID as the core, to
improve the system functions and the adaptability of business process
reengineering, to achieve the seamless connection of various management systems,
36
to promote big data, "Internet +" and other technology applications, to improve the
intelligent level of managerial decision-making, to vigorously promote the mass
customization technology and its manufacturing model, to promote the
transformation from garment manufacturing to garment services, and to
comprehensively promote the deep integration of manufacturing and services and
enhance the comprehensive application level.
In recent years, the overall retail sales of the apparel industry grew steadily, the
total domestic sales volume has been increasing, online channels apidly expanding,
the growth rate of offline sales going down, the domestic market losing
momentum, and exports facing major difficulties. The apparel industry needs to
speed up structural adjustment and transformation and upgrading.
Facing the new normal of slow growth and steady total volume, the
traditional manufacturing companies are impacted, compelling the clothing
manufacturing section to upgrade in order to improve the competitiveness of
garment enterprises. The apparel manufacturing is transforming from the mode of
large quantities, less varieties and long cycle to the mode of small quantities, more
varieties, short delivery and customization.
2.4.2 Smart Manufacturing Solution for the Apparel Industry
The traditional apparel industry is a labor-intensive industry with multivariety,
rapid change, and relatively low level of informationization and
intelligence in the overall industry. The production process is shown in Figure 2.11.
37
Figure 2.11 traditional garment production and processing flow diagram
Figure Text: fabrics and accessories inspection → technical preparations → tailoring → sewing
→ buttonholing and button nailing → ironing → product inspection → packaging →
warehousing or shipping
Based on the above characteristics, the future intelligent garment factory is a
Customer to Manufactory (C2M) customization platform; the consumer demand
directly drives the effective supply of the factory, as shown in Figure 2.12.
Figure 2.12 an example of intelligent garment factory
Figure Text: RFID Smart Manufacturing - Global Customer Independent Design
38
Full customization process - 7 working day process demonstration
Designing and measuring → online order → platemaking and drawing → tailoring → ironing →
inspection → matching → packaging → warehousing →logistics delivery
So, with a data-driven production process, online design, order-taking,
customization data transmission are all digitalized, forming an operating system of
demand data collection, demand data to production data transformation, smart
research and development and design, smart production scheduling, smart
automatic typography, data-driven value chain collaboration, data-driven
production and execution, data-driven quality assurance, data - driven logistics
distribution, data - driven customer service, and fully digital customer service. As
shown in Figure 2.13, the RFID-based smart production line greatly improves the
efficiency of industrialization, shortens the production cycle to 7 working days while
the personalized manufacturing costs are only 10% higher than those of the mass
manufacturing, truly realizing the mass customization of personalized products.
Everyone will be able to afford customized clothing.
Figure 2.13 RFID-based intelligent production line structure diagram
39
Figure Text in picture on top: ERP System/PLM System/CAD System
Manufacturing Execution System (MES)
Figure Text in picture on the left : CAD Design System/Automatic tailoring system/Automatic
tailoring system/Plate-making and Drawing/label printer/bundling and labeling
Figure Text in picture on the right : Console/Transmission Pipeline Operation
One reader will be installed in every work position
2.4.3 Smart Logistics & Warehousing Solution for the Apparel Industry
The apparel industry logistics has the following characteristics: diverse
management objects, various brands, diverse types, many SKUs (Stock Keeping Unit);
diverse sales models, complex logistics channels, generally including online +
offline model and directly managed stores + franchises + agents model; strong
seasonality, rapid logistics response required, different products for spring、summer、
autumn and winter, short product life cycle, usually 2-3 months; difficult inventory
control, long production and marketing chain, many sections, multi-level segmented
inventory, generally including factory inventory, headquarters inventory and
channel inventory; multi-stage network for logistics and distribution, including
Headquarters logistics distribution, branch logistics distribution and agent logistics
distribution.
The apparel logistics network is a three-tier separated network where a variety
of logistics channels coexist, usually with a model of raw materials and accessories
distribution + finished product distribution + terminal distribution by factories +
headquarters + subsidiaries . The types of business operation include wholesale,
retail, ecommerce and group purchase. The products include different logistics
channels of various brands. The logistics problems are as follows: long logistics
40
channel, the overall logistics channel includes factory warehouse -- headquarter
warehouse -- subsidiary warehouse - store or factory warehouse - headquarters
warehouse agent/dealer warehouse; high supply chain inventory, low storage
efficiency, too many inventory points, the storage cycle is usually 180 days, with
backward warehousing management methods and means; multi-stage
transportation, complex management, the modes of transport include container
shipping by the factory, distribution and transportation by the headquarters,
distribution and transportation by the branch/agent, etc. Based on the above
characteristics of the logistics, we put forward an smart storage solution shown in
Figure 2.14.
Figure 2.14 intelligent warehousing solution
Figure Text: Intelligent Implementation Plan
Stock - In SKU management: channel machine scanning, no need of devanning, comparing to
the receiving sheet, checking the quantity and model of the goods, conducting manual
intervention and error correction; FCL management: entry RFID reader scanning, no need of
devanning, comparing to the receiving sheet, checking the quantity and model of the goods,
conducting manual intervention and error correction.
41
Racking Racking: the forklift arrives at the position, PDA or forklift reader reads the
warehouse position label to confirm if the position is consistent with the system, the goods are
placed at designated positions.
Inventory taking stocktaking: the PDA scans label information and the goods to be counted
to collect information for data comparison, the difference is displayed on the PDA in real time
for manual check, and the inventory information is updated to the backstage server through
the PDA.
Stock Out - Stock Out: For a small amount of goods, the PDA is used to carry out the
inspection before delivery, if there is an error, the reader will automatically give an alarm for
timely error correction; for a large quantity of goods, the forklift transports the goods to the
export, the fixed reader automatically identifies the goods to be shipped to quickly and
accurately complete the inspection work, if there is an error, the reader will automatically give
an alarm in a real time manner for manual intervention, the data will be updated to the
background database to ensure the consistency between the inventory and system
information; Illegal stock-out alarm: the fixed readers installed at the exports and entrances of
the warehouse scan the labels of the goods to be shipped, collect goods information for
feedback to the backend server, the system automatically checks the delivery sheet, if three is
a mismatching, the system will identify as illegal and automatically give an alarm.
2.4.4 Smart Store Solution for the Apparel Industry
Figure 2.15 shows the functional scenes of a smart store. At the point of arrival,
before the goods going into the store, the staff shall use RFID PDA to batch read the
tag data on the clothing tags, match with the receipt, check the quantities and
models of goods, and manually correct errors.
42
Figure 2.15 Smart store functional scene diagram
Figure Text: Smart fitting room/ back stock inventory taking, quick good finding/smart cash
register, quick replenishment/smart dressing mirror/stock-in inventory taking/rack inventory
takinganti-theft and prevention of cross-boundary sellings
Specific functions are as follows.
Quick stocktaking function: the staff uses the PDA to collect clothing label
information and transmit to the background server for data comparison, the
difference is displayed on the PDA in real time for manual check, and the stocktaking
information is updated to the backstage server through the PDA.
Quick find function: the staff enter the label information of the product to be
found into the RFID PDA to turn on the search mode and quickly locate the specific
location of the product according to the beep produced based on the strength of the
signal.
43
Smart hanger function: when the customer picks up the clothes on the smart
hanger, the smart hanger automatically identifies the clothing label in the hands of
the customer, the touch screen displays all the information of the clothes in a timely
manner and inputs the data into the background server at the same time; the
analyzing software automatically counts the data and generates statistical reports
of each period for managers to view.
Smart fitting room function: when the customer picks up the clothes and walks
into the fitting room, the smart fitting room automatically identifies the clothing
label in the hands of the customer, the touch screen displays all the information of
the clothes in a timely manner and inputs the data into the background server at the
same time; the analyzing software automatically counts the data and generates
statistical reports of each period (hour/month) for managers to view and estimate
the production plan and popular designs according to the fitting rate.
Quick check-out function: using RFID can automatically identify the target
information, the receiver can read multiple tags at once within its effective working
range to achieve the simultaneous identification of multiple products, thus speeding
up the check-out process and improve customer satisfaction.
Figure 2.16 shows the smart fitting room. Icon 1-2: the staff reads the clothes
label and transmits the data to the service desk; icon 3: the service desk pushes
information to the match system for selection; icon 4-5: the customer chooses the
product to try and informs the help desk; icon 6-7: the staff uses the PDA to quickly
find the product and sends to the customer.
44
Figure 2.16 Smart dressing room functional scene diagram
With RFID system solution developed by the Walton team based on the block
chain technology, the end customers can use the bar codes or RFID tags to identify
all system information of every clothing product including accessories, fabric,
production process, logistics and distribution and store in the block chain system. To
those brands in clothing business, the functions of tamper-resistance, dependable
anti-counterfeiting and traceability can be achieved. Once the companies find any
problems, they can effectively control and recall products according to the source
tracing and protect the legitimate rights and interests of consumers fundamentally.
The consumers can rest assured to buy their favorite products; the system enhances
the shopping experience and improves consumer satisfaction.
45
Part 3 Future Value Internet of Things Will
Change the World
3.1 The Stage Planning of the Walton Project
As mentioned above, the realization of Value Internet of Things will create a
new ecology of the existing business, which is based on the organic integration of
the block-chain and the Internet of Things. To extend the block-chain technology
from the Internet to the Internet of things, and to create an authentic, trustworthy,
traceable, and fully transparent business ecosystem with fully-shared data rely on
the combination of the RFID technology and Waltonchain. The Walton team
carefully planned four growth stages starting from building the underlying
foundation, gradually extending to retail, logistics network and finally integrating
product manufacturers. Step by step, the Waltonchain will achieve the full coverage
of commercial ecology in the forthcoming future.
During the Walton Project 1.0 stage, the team has developed a clothing system
integration solution based on RFID technology which has been applied in several
pilots such as Tries, SMEN and Kaltendin. Now we are ready for large-scale
promotion and need to lay a solid customer base. We have started to develop the
RFID beacon chip with independent intellectual property rights which innovatively
integrates an asymmetric encryption algorithm based on the traditional RFID chip
and expected to achieve the perfect combination of Internet of Things and block
chain. Combined with the integrated solution for the apparel industry based on RFID
technology, it is expected to solve the problems of the traditional apparel industry
including warehousing, logistics, stores and aftermarket, and in the meantime, to
consolidate the basic platform of Waltoncoin. The application scenarios of the
46
projects 1.0 stage will build a Golden demonstration template for the rapid
promotion of Walton's applications.
During the Walton Project 2.0 stage, the independently developed RFID
beacon chip will be in full mass production and can be used in B2C retail industry
and logistics industry. An smart credit system will be completed , fully integrating
payment, gifting, transaction with same currency, transaction with different
currencies and other functions through Walton's flexible and powerful token
creation and transaction functions. Complete information on the chain will be
achieved including merchandise procurement, distribution, stock-in, stock-out,
stores, shelves inventory, sales, customer purchase, customer evaluation and
after-sales service through an optimized blockchain data structure design.
Customers will be provided with functions including payment, integral
management and trading, product evaluation and query, tracing and obtaining
evidence for quality problem, etc; Merchants will be provided with automatic
management of business operation; information mining during procurement, sales,
after-sales; real-time market trends information; thus to achieve a win-win-win
situation for all three parties : customers, merchants and Walton. By virtue of a
block chain data structure matching multi-scenarios, the logistics industry will be
able to achieve full path logistics information on the chain, covering the complete
business process including home delivery, pricing and issuing, packaging and
storage, sorting and distribution, warehouse management, sorting and delivery,
customer receipt and customer feedback. Based on characteristics of RFID such as
being tamper-resistant, open, traceable and etc. it is aimed at building safe and
reliable point-to-point logistics information channel for the customers and
providing business automatic management information platform for the logistics
company to avoid thorny problems such as lost, delayed and wrong orders on a
systematic basis.
47
During the Walton Project 3.0 stage, the technology will be applied to all
product manufacturers to achieve traceable customization of smart packaging. The
universal data stricture used in describing the product production cycle will be
effectively written in the block chain; the customization data structure design will
be conducted for different products by taking advantages of traceability; the
authenticity and reliability of chain information can be guaranteed based on RFID
identity verification; the whole processes will be covered, including raw material
purchasing, production operation, assembly operation, product packaging and
product inventory management; the raw material source and production quality
can be verified and the quality problem source can be tracked by taking
advantages of openness and traceability of block chain; the possibility of
counterfeits can be eliminated and the information barrier can be removed to
fundamentally ensure the consumers interests. At the same time, the low-cost
data information solutions can be provided to the product manufacturers by
means of the standardized and reliable recording of production business process
information via block chain so as to achieve smart management for the
manufacturers.
During the Walton Project 4.0 stage, with the upgrading and iteration of the
asset information acquisition hardware and the improvement of the block chain
data structure, all the assets will be registered on the Walton chain in the future, to
solve the problems of asset ownership, item traceability and transaction certificate.
By then, the Waltonchain and Walton Coins will be widely used in the physical world,
fundamentally changing the way of life and production worldwide the Walton
chain project will bring a more convenient, intelligent and trustworthy world to
everybody, and at the same time, give handsome return to the investors of the
Walton chain.
48
In accordance with the four stages of the project, the project team will develop
a variety of information collection-related chips, including dual-band RFID chips,
biometric chips and various sensor chips. The team will not only provide secure
interfaces for all physical assets to be on the chain, but also provide secure interfaces
for human beings, all kinds of animals, creatures to be on the chain, to realize safe
and reliable networking, aggregation, digitization of all things, completely change
people's way of life and bring more convenience to human life. The application
scope of the Walton chain will be gradually extended to every life scene, as shown
in Figure 3.1.
Figure 3.1 the scope of application of the Walton chain
Figure Text: Cloud service
Clothing/Social/Public Utilities/Retail/Manufacturing
49
Smart Store/Smart Business card/Smart City/Smart Community/Smart
District/Smart Transportation/Anti Counterfeiting and Source Tracing/Smart
Production
3.2 The Investment Value of the Walton Project
1) Innovation mode: the Walton Project intends to develop RFID beacon chip
with independent intellectual property rights, which is expected to achieve the perfect
combination of Internet of Things and block chain. The chips researched and
developed will bind the Walton Coins to create the intelligent ecosphere of
application of Internet of Things based on Walton chain. During the course of
expanding block chain technology to the Internet of Things, the Walton chain will
definitely become the leader of the changing times ;
2) Market space: With a trillion-level potential market, the Waltonchain has
possessed the applicable program able to be quickly implemented in the total value
chains in the clothing industry, including the production, storage, logistics, stores and
other full circulation areas. Years of working experience and customer resources
accumulated by the team members in the clothing industry and electronics industry
will provide a favorable and ideal condition for the implementation of the project. It is
also expected to be used in many fields like electronic license plate and asset
management, etc. in the foreseeable future;
3) High-frequency application: the Waltonchain is loaded on the RFID hardware
system to breakthrough the bottleneck in commercial application of block chain,
namely, the problem of how the real assets off the chain are quickly, efficiently and
safely chained. Therefore, the Waltonchain is the commercial ecological chain with a
low threshold and high-frequency application where there will be a wide range of
application scenarios and very high popularity;
50
4) Ecological network: the Waltonchain will establish the ecological chain of
Internet of Things with its own content. As the only token of fundamental chain for
this ecological network, the Walton Coin will be circulated in a wide range of
business areas, so it has multiple significant functions including value storage, value
circulation, credit trading, commodity payment media etc. With the increasing
popularity of RFID beacons and the expanding demand for the network, the demand
for Walton Coin will be expanding correspondingly, so Walton's early investors will
get substantial returns with the development and growth of Walton Chain.
5) Profit mechanism: the Walton Coins issued by ICO are the tokens of Walton's
fundamental chain. With the development of the fundamental chain and its subchains,
the protocol mechanism of Walton system has decided that the Walton Coin,
as the mother token, will receive dividends from all levels of the system in order to
nurture the block chain system of Walton, making it more robust and safer and
bringing about a harmonious virtuous circulation.
51
Part 4 Project Foundation
The project foundation was established in 2017, known as the Waltonchain
Foundation. The Foundation is committed to the development of the Walton
project, the promotion and implementation of RFID applications and the
promotion of early development of decentralized applications. 20% of the initial
WTCs will be used for some industry applications and start-up projects, such as
financial services, supply chain, Internet of things, block chain, etc., including
project strategic planning, project support, project promotion and token exchange.
The Foundation will select the decentralized applications developed on
Waltonchain and provide rewards based on the actual number of users on the
applications.
The overall structure of the foundation is shown in Figure 4.1. The DecisionMaking
Committee shall have three sub-departments including Technology
Development Committee, Finance and Personnel Management Committee and
Project Operations Committee, which shall respectively be responsible for the
development, implementation and supervision of technology development
strategies; the development, implementation and supervision of the financial
system; the decision - making and implementation of the overall project operation
and marketing. The members of the Decision-Making Committee change every
four years; the members generally include two representatives recommended by
each subcommittee, a project investor representative, a community representative
and a member of the Walton team. The members of the subcommittees change
every four years; the members are generally prominent people from related
industries.
52
Figure 4.1 the overall structure of the Walton Foundation
Figure Text: Decision Making Committee; Technology Development
Committee; Financial and Personnel Management Committee; Project Operations
Committee.
The Foundation promotes a transparent and efficient operational philosophy
to promote the healthy development of the Walton ecosystem. The governance
structure mainly focuses on the effectiveness, sustainability and financial security
of project management. The foundations mission is to promote the development
of block chain technology from the Internet to the Internet of things , and to invest
the funds raised by ICO in the following directions:
1)Planning to develop the RFID beacon chips with independent intellectual
property rights which use an asymmetric encryption algorithm with independent
intellectual property rights and can achieve the perfect combination of the Internet
of Things and the block chain;
决策委员会决决策
技术开发委员会技术 财务及人事管理委员会务财务及 项目运营委员会项目
53
2)Establishing a smart credit system fully integrating payment, gifting,
transaction with same currency, transaction with different currencies and other
functions through WTC's flexible and powerful token creation and transaction
functions;
3)Complete information on the chain will be achieved including merchandise
procurement, distribution, stock-in, stock-out, stores, shelves inventory, sales,
customer purchase, customer evaluation and after-sales service through an
optimized blockchain data structure design, achieving a win-win-win situation for
customers, merchants and Walton;
4)By virtue of a block chain data structure matching multi-scenes, it is aimed
at building safe and reliable point-to-point logistics information channel for the
customers and providing business automatic management information platform for
the logistics company to avoid thorny problems such as lost, delayed and wrong
orders on a systematic basis.
5)Applying to the product manufacturers, and achieving smart packaging
and traceable product customization.
The projects above will provide convenient data query and traceability,
analysis and processing, and transaction management interfaces to customers,
provide smart management interface to businesses. With the further application of
machine learning and artificial intelligence, an intelligent ecosystem of the
complete supply chain will ultimately be created, including production, logistics,
stores, sales and after-sales service.
54
Part 5 Team Introduction
5.1 Sponsors
Xu Fangcheng (Founder): Chinese, graduated in Business Administration,
Supply Chain Management Director of Septwolves Group Ltd.
Du Xianghe (Co-founder): Korean, Vice Chairman of the China - Korea Cultural
Exchange Development Committee (a proprietary institution of President Moon Jaein),
Director of the Korea Standard Products Association, Chairman of Seongnam
Branch of the Korea Small and Medium Enterprises Committee, Chairman of Korea
NC Technology Co., Ltd., Senior Reporter of IT TODAY News, Senior Reporter of
NEWS PAPER Economic Department, Director of ET NEWS.
5.2 Senior advisors
Jin Xiji (Internet of Things): Korean, South Korea's electronics industry leader,
Doctor of Engineering (graduated from the University of Minnesota), Professor of
Korea University, previously worked at Bell Labs and Honeywell USA, served as
vice president of Samsung Electronics, senior expert in integrated circuit design field,
IEEE Senior Member, Vice President of the Korea Institute of Electrical Engineers,
Chairman of the Korea Semiconductor Industry Association. Has published more than
250 academic papers with more than 60 patents.
Zhu Yanping (Block Chain): Chinese Taiwanese, Doctor of Engineering
(graduated from National Cheng Kung University), Chairman of the Taiwan Cloud
55
Services Association, Director of Information Management Department of National
Chung Hsing University. Has won the Taiwan Ministry of Education Youth Invention
Award and Taiwan Top Ten Information Talent Award. Has deeply studied block
chain applications over the years and led a block chain technology team to develop
systems for health big data and agricultural traceability projects.
5.3 Chief Experts
Mo Bing (Internet of Things): Chinese, Doctor of Engineering (graduated from
Harbin Institute of Technology), Research Professor of Korea University,
Distinguished Fellow of Sun Yat - sen University, Internet of Things expert,
integrated circuit expert, Chinese Society of Micro-Nano Technology Senior
Member, IEEE Member. Has published more than 20 papers and applied for 18
invention patents. Began his first research on BitCoin in 2013, one of the earliest
users of btc 38 and Korea korbit. Served as Technical Director of Korea University
to cooperate with Samsung Group to complete the project based on the multi -
sensor data interaction and fusion of peer - to - peer network. Is committed to the
integration of block chain technology and Internet of Things to create a real
commercialized public chain.
Wei Songjie (Block Chain): Chinese, Doctor of Engineering (graduated from the
University of Delaware), Associate Professor of Nanjing University of Science and
Technology, Core Member and Master Supervisor of Network Space Security
Engineering Research Institute, Block Chain Technology expert in the field of
computer network protocol and application, network and information security.
Has published more than 20 papers and applied for 7 invention patents. Previously
worked at Google, Qualcomm, Bloomberg and many other high-tech companies in
the United States, served as R & D engineer and technical expert; has a wealth of
56
experience in computer system design, product development and project
management.
5.4 Team Members
5.4.1 Permanent Chinese Members
Chen Zhangrong: Chinese, graduated in Business Management, received a BBA
degree from Armstrong University in the United States, President of Tianyu
International Group Co., Ltd., leader of China clothing & accessories industry,
Chinas well known business mentor, guest of the CCTV2 show named Win in
China in 2008. Began to contact Bitcoin in 2013 with a strong interest and indepth
study of digital money and decentralized management thinking. Has a
wealth of practical experience in the market research, channel construction,
business cooperation and business model.
Lin Herui: Chinese, received a MBA degree from Xiamen University. Has more
than 10 years of experience in the development of electronic products and
systems. Successively served as Nokia R & D Manager and Product Manager,
Microsoft Hardware Department Supply Chain Director. Established Xiamen Z-Link
Co., Ltd in 2015; the intelligent systems and solutions developed by the company
have been successfully promoted and used in various industrial brand enterprises
and brand clothing enterprises.
Liu Cai: Chinese, Master of Engineering, has 12 years of experience in Design
and Verification of VLSI, and a wealth of practical project experience in RFID chip
design process, SOC chip architecture, digital-analog hybrid circuit design, including
algorithm design, RTL design, simulation verification, FPGA prototype verification,
DC synthesis, back-end PR, package testing, etc. Has led a team to complete the
57
development of a variety of navigation and positioning baseband chips and
communication baseband chips, finished a series of AES, DES and other encryption
module designs, won the first prize of scientific and technological progress of
Satellite Navigation and Positioning Association. A master in consensus mechanism
principle of block chain and related asymmetric encryption algorithm.
Yang Feng: Chinese, Master of Engineering, worked at ZTE, artificial
intelligence expert, integrated circuit expert. Has 12 years of experience in VLSI
research and development, architecture design and verification, and 5 years of
research experience in artificial intelligence and genetic algorithm. Has won the
Shenzhen Science and Technology Innovation Award; has an in-depth research on
the principle and realization of RFID technology, the underlying infrastructure of
block chain, smart contract and consensus mechanism algorithm.
Guo Jianping: Chinese, Doctor of Engineering (graduated from the Chinese
University of Hong Kong), Associate Professor of the Hundred Talents Program of
Sun Yat - sen University, Master Instructor, IEEE Senior Member, integrated circuit
expert. Has published more than 40 international journals conference papers in
the field of IC design and applied for 16 patents in China.
Huang Minrui: Chinese, Doctor of Engineering (graduated from the University
of Freiburg in Germany), Master Instructor, Lecturer of Department of Electronics
of Huaqiao University, integrated circuit expert. Mainly explores digital signal
processing circuit and system implementation and works on digital signal
processing technology research and development for the long term.
Guo Rongxin, Chinese, Master of Engineering, Deputy Director of
Communication Technology Research Center of Huaqiao University. Has more than
58
10 years of experience in design and development of hardware and software for
embedded system, works on the research and development of RFID and block
chain technology in the field of Internet of Things for the long term.
Li Shuai: Chinese, Master of Engineering, with a research focus on network
security and block link authentication technology. The block chain distributed
certified work directed and completed by him has won the final first prize of 2016
National Cryptology Technology Competition.
Cheng Hao: Chinese, Master of Engineering, with a research focus on computer
network simulation and network routing protocol. Has completed 4 academic
papers and inventions, has won the first prize of National University Mobile
Internet Application Development Innovation Competition, the first prize of
National Cryptology Technology Competition, the grand prize of Nanjing
University of Science and Technology Innovation Cup Extracurricular Academic and
Technological Works Competition for College Students.
Huang Hongtai: Chinese, Bachelor of Engineering, has five years of experience
in WEB front and back end development, works on the Development of Internet of
Things platforms and educational information platforms for the long term. Began
his exposure Bitcoin in 2011 and become an early graphics card mining participant.
Has a strong interest in virtual currency and block chain technology.
Dai Minhua: Chinese, graduated in Business Management, received a BBA
degree from Armstrong University, senior financial expert, served as vice president
and chief financial officer of Tianyu International Group Co., Ltd.; has 13 years of
financial work experience, has a wealth of experience in developing and
implementing enterprise strategy and business plan, as well as achieving business
management objectives and development goals.
59
Liu Dongxin: Chinese, received an MBA from China Europe International
Business School, Visiting Scholar of Kellogg School of Management at
Northwestern University, strategic management consulting expert, investment and
financing expert, with a current research interest in the impact of Block Chain
Technology on financial sector.
Wang Liyan: Chinese, received a master of information systems and
operations management from University of Florida and a bachelor of
communication engineering from Beijing University of Posts and
Telecommunications, previously worked at ChinaNetCenter, has a wealth of
experience in technology products operation.
5.4.2 Permanent Korean Members
Shan Liang, Chinese, Graduated from KOREATECH Mechanical Engineering
Department, Venture Capital PhD, Director of Korea Sungkyun Technology Co.,
Ltd., Chinese Market Manager of the heating component manufacturer NHTECH, a
subsidiary of Samsung SDI, economic group leader of the Friendship Association of
Chinese Doctoral Students in Korea, one of the earliest users of Korea korbit,
senior digital money player.
Ma Yixing: Chinese, Chinese National CSC special students, Doctor of
Engineering of Korea University, Research Professor of Fusion Chemical Systems
Institute of Korea University, Korea Sungkyun Technology Co., Ltd. CEO, Member of
Korea Industry Association, Associate Member of the Royal Society of Chemistry,
has published his research results in the world's top journal, Nature
Communication, and participated in the preparation of a series of teaching
materials for Internet of Things engineering - Introduction to the Internet of
60
Things. His current research direction covers cross-disciplines that combine blockchain
technology with intelligent medical technology.
Zhao Haiming: Chinese, Doctor of Chemical Conductive Polymer of
Sungkyunkwan University, core member of Korea BK21th conductive polymer
project, researcher of Korea Gyeonggi Institute of Sensor, researcher of Korea
NCTECH environmental technology company, Vice president of the Chinese
Chamber of Commerce, Director of Korea Sungkyun Technology Co., Ltd., early
player of digital currency.
5.5 Angel Investors
Qiu Jun: Chairman of Shenzhen Hong Tao Fund Management Co., Ltd., Vice
President of Shenzhen Shanwei Chamber of Commerce. Has 20 years of capital
market investment experience, experienced many magnificent market changes,
achieved a number of classic investment cases, including SMIC, China Merchants
Securities and Danxia biological company, etc. Danxia biological company has been
deemed as one of the top ten successful cases of biomedical investment in 2016.
Yan Xiaoqian: Chairman of Kaltendin Clothing Co., Ltd., Executive Vice
President of Shenzhen Shanwei Chamber of Commerce.
Xu Junjie: Commodity Center Director of TRIES Clothing Co., Ltd., famous
fashion designer.
Lin Jingwei: Director of Guangzhou Jiuying Investment Management Co., Ltd.,
received a master of Senior Financial Accounting and an EMBA degree from Sun
Yat - sen University; has 27 years of work experience at large Chinese state -
owned enterprises at home and abroad and more than 15 years of work
experience as Secretary of the Board of Directors, Chief Financial Officer, Deputy
61
General Manager of large Chinese state - owned enterprises, long-term in charge
of enterprise listing, capital operation, investment and financing and financial
management, with a wealth of experience in capital operation and financial
management. Has the qualifications for Secretary of the Board of Directors or
Independent Director of listed companies.
Yang Youneng: Guangdong Chinese Online Investment Co., Ltd. CEO, Chinese
Academy of Social Sciences Graduate of Economics, Visiting Professor of South
China University of Technology, Associate Dean of Shenzhen Financial Research
Institute of the Ministry of Finance and Finance.
Lin Yijun: Deputy General Manager of Beijing Division of Industrial Futures,
received a MBA degree from Tsinghua University. Previously served as Director of
Beijing Xizhimen North Street Sales Department of Industrial Futures, has more
than 10 years of experience in investment and financing, mergers and acquisitions,
fund investment, and securities investment, etc.
He Honglian: Director of Walton Investment Division, Certified Public
Accountant, received a MBA degree from Xiamen University. Previously served as
Investment Center Manager of Meiya Pico, currently leads the Walton investment
team to research and plan investment in the field of Internet of Things and
integrated circuits.
Song Guoping: Doctor of medicine, President of Chinese Chamber of
Commerce in Korea, Director of Beijing Overseas Friendship Association,
Representative of Ping An International, Representative of Oriental Xu Fu AntiAging
Center, Representative of Sumei Beauty Shaping company.
62
Shen Dongxie: Korean, Doctor of Economics, Senior Economic Advisor of
Korea Gyeonggi Province Government, Distinguished Professor of Seoul National
University, Negotiator of US - South Korea Free Trade Agreement.
5.6 Consultant Team
Liu Xiaowei: Professor of Harbin Institute of Technology, PhD Tutor, 973 chief
expert. Member of the Expert Group on assembly of micro - nano technology,
Member of the Expert Group on assembly of military electronic components
spectrum series, Deputy Director of Force Sensitive Professional Committee of
Sensitive Technology Branch of Chinese Institute of Electronics, Deputy Secretary
General of Chinese Northeast Micro-Electro-Mechanical System Technology
Consortium, Editorial Board Member of Sensor Technology, Heilongjiang Province
CPPCC member.
Su Yan:Professor of Nanjing University of Science and Technology, PhD
Mentor, Vice President of the China Shipbuilding Engineering Society Ship
Instrument and Instrumentation Academic Committee, Vice Chairman of the China
Instrument & Instrument Society Ship Instrument & Meter Branch, Executive
Director of the China Institute of Instrumentation Micro - Nano Devices and
Systems Technology Branch, Executive director of Jiangsu Institute of
Instrumentation, assembly expert.
Zhang Yan: Doctor of Engineering, Professor, Ph.D. Mentor. Currently serves
as Associate Dean of Harbin Institute of Technology (Shenzhen) School of
Electronics. Digital integrated circuit design and embedded system expert.
Zhu Xueyang: Chinese, Master of Engineering, Technical Director of Hangzhou
Network Security Research Institute. Has more than nine years of IT industry
experience, with an in-depth study on financial information security, cloud
63
computing, block chain technology and other directions. Served as Product Manager
of Sunyard Safety Products Division and took charge of projects of block chain
application on financial products.
Ma Pingping: received a Master of Economics from Xiamen University, serves
as general manager at Septwolves Venture Capital Limited.
Chen Zhonglin: Currently serves as Executive General Manager of State
Securities Investment Banking Department, Registered Sponsor Representative,
Certified Public Accountant, Bachelor of Finance at Fudan University; previously
worked at Ernst & Young and PricewaterhouseCoopers, engaged in securities audit
business and corporate mergers and acquisitions advisory services for many years,
has extensive experience in investment banking.
Peng Xiande: Senior Lawyer, Guangdong Wenpin Law Firm partner, company
law, investment and financing legal affairs expert with more than twenty years of
judicial practical experience.
Bo Ke: Graduated from Henan University of Economics and Law, Senior
Lawyer of Guangdong Ruiting Law Firm, China registered lawyer, Member of the
All China Lawyers Association, Member of Shenzhen Lawyers Association, has
more than 20 years of experience in legal services.
Xiao Guang Jian: Senior Accountant, Tax Accountant, Senior Economist,
Secretary General of Shenzhen Sanming Chamber of Commerce, Shenzhen Lianjie
Accounting Firm Partner, senior financial expert, has more than ten years of
experience in financial consultancy of listed companies.
Li Zhongji: Representative of BSM Company, Chairman of the Activated Carbon
Committee of Korea Carbon Convergence Committee
64
Gao Shangtai: Deputy Director of Editorial Board of Korea Electronics News
Agency, Director of New Media and New Industry Bureau of KI news.
Part 6 References
1.A. Tapscott, D. Tapscott, How blockchain is changing finance, Harvard Business
Review, 2017.
2.T. Stein, Supply chain with blockchain showcase RFID, Faizod, 2017
3.S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, Bitcoin.org, 2009.
4.R. Hackett, The financial tech revolution will be tokenized, Fortune, 2017.
5.C. Swedberg, Blockchain secures document authenticity with smartrac's dLoc
solution, RFID Journal, 2016.
6.D. Bayer, S. Haber, W.S. Stornetta, Improving the efficiency and reliability of
digital time-stamping, Sequences II: Methods in Communication, Security and
Computer Science, 1993.
7.A. Legay, M. Bozga, Formal modeling and analysis of timed systems, Springer
International Publishing AG, 2014.
8.A. Back, Hashcash a denial of service counter-measure, Hashcash.org, 2002.
65
9.B. Dickson, Blockchain has the potential to revolutionize the supply chain, Aol
Tech, 2016.
10.KCDSA Task Force Team, The Korean certificate-based digital signature
algorithm, IEEE Standard Specifications for Public-Key Cryptography, 1998.
11.J. Donaldson, Mojix brings transformational RFID, big data analytics and
blockchain technology to NRF Retails Big Show, Mojix.com, 2017.
12.R. T. Clemen, Incentive contracts and strictly proper scoring rules. Test, 2002.
13.J.-Y. Jaffray, E. Karni, Elicitation of subjective probabilities when the initial
endowment is unobservable, Journal of Risk and Uncertainty, 1999.
14.Blockchain Luxembourg S.A., https://blockchain.info.
15.J. Gong, Blockchain society decoding global blockchain application and
investment cases, CITIC Press Group, 2016.
16.D. Johnston et al., The general theory of decentralized applications, Dapps,
2015.
17.P. Sztorc, Peer-to-peer oracle system and prediction marketplace, 2015.
18.R. Hanson, Logarithmic market scoring rules for modular combinatorial
information aggregation, Journal of Prediction Markets, 2002.
19.潘炜迪, 浅谈我国虚拟货币发展现状及未来, 企业导报, 2016.
20.李威, 网络虚拟货币法律问题研究, 对外经济贸易大学博士论文, 2016.