nomachine
|
 |
October 12, 2023, 08:26:24 PM Last edit: October 14, 2023, 07:42:45 PM by nomachine |
|
if you dont have '/dev/urandom' here is script without '/dev/urandom' import sys import os import time import random import hashlib import gmpy2 from gmpy2 import mpz from functools import lru_cache import multiprocessing from multiprocessing import Pool, cpu_count
# Constants MODULO = gmpy2.mpz(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F) ORDER = gmpy2.mpz(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141) GX = gmpy2.mpz(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798) GY = gmpy2.mpz(0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8)
# Define Point class class Point: def __init__(self, x=0, y=0): self.x = x self.y = y
PG = Point(GX, GY) ZERO_POINT = Point(0, 0)
# Function to multiply a point by 2 def multiply_by_2(P, p=MODULO): c = gmpy2.f_mod(3 * P.x * P.x * gmpy2.powmod(2 * P.y, -1, p), p) R = Point() R.x = gmpy2.f_mod(c * c - 2 * P.x, p) R.y = gmpy2.f_mod(c * (P.x - R.x) - P.y, p) return R
# Function to add two points def add_points(P, Q, p=MODULO): dx = Q.x - P.x dy = Q.y - P.y c = gmpy2.f_mod(dy * gmpy2.invert(dx, p), p) R = Point() R.x = gmpy2.f_mod(c * c - P.x - Q.x, p) R.y = gmpy2.f_mod(c * (P.x - R.x) - P.y, p) return R
# Function to calculate Y-coordinate from X-coordinate @lru_cache(maxsize=None) def x_to_y(X, y_parity, p=MODULO): Y = gmpy2.mpz(3) tmp = gmpy2.mpz(1)
while Y > 0: if Y % 2 == 1: tmp = gmpy2.f_mod(tmp * X, p) Y >>= 1 X = gmpy2.f_mod(X * X, p)
X = gmpy2.f_mod(tmp + 7, p)
Y = gmpy2.f_div(gmpy2.add(p, 1), 4) tmp = gmpy2.mpz(1)
while Y > 0: if Y % 2 == 1: tmp = gmpy2.f_mod(tmp * X, p) Y >>= 1 X = gmpy2.f_mod(X * X, p)
Y = tmp
if Y % 2 != y_parity: Y = gmpy2.f_mod(-Y, p)
return Y
# Function to compute a table of points def compute_point_table(): points = [PG] for k in range(255): points.append(multiply_by_2(points[k])) return points
POINTS_TABLE = compute_point_table()
# Global event to signal all processes to stop STOP_EVENT = multiprocessing.Event()
# Function to check and compare points for potential solutions def check(P, Pindex, DP_rarity, A, Ak, B, Bk): check = gmpy2.f_mod(P.x, DP_rarity) if check == 0: message = f"\r[+] [Pindex]: {mpz(Pindex)}" messages = [] messages.append(message) output = "\033[01;33m" + ''.join(messages) + "\r" sys.stdout.write(output) sys.stdout.flush() A.append(mpz(P.x)) Ak.append(mpz(Pindex)) return comparator(A, Ak, B, Bk) else: return False
# Function to compare two sets of points and find a common point def comparator(A, Ak, B, Bk): global STOP_EVENT result = set(A).intersection(set(B))
if result: sol_kt = A.index(next(iter(result))) sol_kw = B.index(next(iter(result))) difference = Ak[sol_kt] - Bk[sol_kw] HEX = "%064x" % difference t = time.ctime() pid = os.getpid() # Get the process ID core_number = pid % cpu_count() # Calculate the CPU core number total_time = time.time() - starttime print(f"\033[32m[+] PUZZLE SOLVED: {t}, total time: {total_time:.2f} sec, Core: {core_number+1:02} \033[0m") print(f"\033[32m[+] WIF: \033[32m {HEX} \033[0m") with open("KEYFOUNDKEYFOUND.txt", "a") as file: file.write("\n\nSOLVED " + t) file.write(f"\nTotal Time: {total_time:.2f} sec") file.write("\nPrivate Key (decimal): " + str(difference)) file.write("\nPrivate Key (hex): " + HEX) file.write( "\n-------------------------------------------------------------------------------------------------------------------------------------\n" )
STOP_EVENT.set() # Set the stop event to signal all processes
# Memoization for point multiplication ECMULTIPLY_MEMO = {}
# Function to multiply a point by a scalar def ecmultiply(k, P=PG, p=MODULO): if k == 0: return ZERO_POINT elif k == 1: return P elif k % 2 == 0: if k in ECMULTIPLY_MEMO: return ECMULTIPLY_MEMO[k] else: result = ecmultiply(k/ 2, multiply_by_2(P, p), p) ECMULTIPLY_MEMO[k] = result return result else: return add_points(P, ecmultiply((k - 1)/ 2, multiply_by_2(P, p), p))
# Recursive function to multiply a point by a scalar def mulk(k, P=PG, p=MODULO): if k == 0: return ZERO_POINT elif k == 1: return P elif k % 2 == 0: return mulk(k/ 2, multiply_by_2(P, p), p) else: return add_points(P, mulk((k - 1)/ 2, multiply_by_2(P, p), p))
# Generate a list of powers of two for faster access @lru_cache(maxsize=None) def generate_powers_of_two(hop_modulo): return [mpz(1 << pw) for pw in range(hop_modulo)]
# Worker function for point search def search_worker( Nt, Nw, puzzle, kangaroo_power, starttime, lower_range_limit, upper_range_limit ): global STOP_EVENT pid = os.getpid() core_number = pid % cpu_count() #Random seed Config #constant_prefix = b'' #back to no constant #constant_prefix = b'\xbc\x9b\x8cd\xfc\xa1?\xcf' #Puzzle 50 seed - 10-18s constant_prefix = b'\xbc\x9b\x8cd' prefix_length = len(constant_prefix) length = 8 ending_length = length - prefix_length ending_bytes = os.urandom(ending_length) random_bytes = constant_prefix + ending_bytes print(f"[+] [Core]: {core_number+1:02}, [Random seed]: {random_bytes}") random.seed(random_bytes) t = [ mpz( lower_range_limit + mpz(random.randint(0, upper_range_limit - lower_range_limit)) ) for _ in range(Nt) ] T = [mulk(ti) for ti in t] dt = [mpz(0) for _ in range(Nt)] w = [ mpz(random.randint(0, upper_range_limit - lower_range_limit)) for _ in range(Nt) ] W = [add_points(W0, mulk(wk)) for wk in w] dw = [mpz(0) for _ in range(Nw)]
Hops, Hops_old = 0, 0
oldtime = time.time() starttime = oldtime
while True: for k in range(Nt): Hops += 1 pw = T[k].x % hop_modulo dt[k] = powers_of_two[pw] solved = check(T[k], t[k], DP_rarity, T, t, W, w) if solved: STOP_EVENT.set() break t[k] = mpz(t[k]) + dt[k] # Use mpz here T[k] = add_points(POINTS_TABLE[pw], T[k])
for k in range(Nw): Hops += 1 pw = W[k].x % hop_modulo dw[k] = powers_of_two[pw] solved = check(W[k], w[k], DP_rarity, W, w, T, t) if solved: STOP_EVENT.set() break w[k] = mpz(w[k]) + dw[k] # Use mpz here W[k] = add_points(POINTS_TABLE[pw], W[k])
if STOP_EVENT.is_set(): break
# Main script if __name__ == "__main__": os.system("clear") t = time.ctime() sys.stdout.write("\033[01;33m") sys.stdout.write(f"[+] [Kangaroo]: {t}" + "\n") sys.stdout.flush()
# Configuration for the puzzle puzzle = 130 compressed_public_key = "03633cbe3ec02b9401c5effa144c5b4d22f87940259634858fc7e59b1c09937852" # Puzzle 130 lower_range_limit = 2 ** (puzzle - 1) upper_range_limit = (2 ** puzzle) - 1 kangaroo_power = puzzle/ 8 Nt = Nw = (2 ** kangaroo_power/ puzzle) * puzzle + 8 DP_rarity = 8 * puzzle hop_modulo = (puzzle/ 2) + 8
# Precompute powers of two for faster access powers_of_two = generate_powers_of_two(hop_modulo)
T, t, dt = [], [], [] W, w, dw = [], [], []
if len(compressed_public_key) == 66: X = mpz(compressed_public_key[2:66], 16) Y = x_to_y(X, mpz(compressed_public_key[:2]) - 2) else: print("[error] pubkey len(66/130) invalid!")
print(f"[+] [Puzzle]: {puzzle}") print(f"[+] [Lower range limit]: {lower_range_limit}") print(f"[+] [Upper range limit]: {upper_range_limit}") print("[+] [Xcoordinate]: %064x" % X) print("[+] [Ycoordinate]: %064x" % Y)
W0 = Point(X, Y) starttime = oldtime = time.time()
Hops = 0
process_count = cpu_count() print(f"[+] [Using {process_count} CPU cores for parallel search]:")
# Create a pool of worker processes pool = Pool(process_count) results = pool.starmap( search_worker, [ ( Nt, Nw, puzzle, kangaroo_power, starttime, lower_range_limit, upper_range_limit, ) ] * process_count, ) pool.close() pool.join() Now this error. NameError: name 'W0' is not defined I don't have any error on multiple machines. Make sure that is at least python3.9 installed. I changed the order of the code a bit. If there is still an error, something is wrong with python there. The code use standard python libraries such as sys, os, time, random, hashlib, and multiprocessing, they are usually included with python.. pip3 install gmpy2 This will install the gmpy2 library import sys import os import time import random import hashlib import gmpy2 from gmpy2 import mpz from functools import lru_cache import multiprocessing from multiprocessing import Pool, cpu_count
os.system("clear")
# Constants MODULO = gmpy2.mpz(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F) ORDER = gmpy2.mpz(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141) GX = gmpy2.mpz(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798) GY = gmpy2.mpz(0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8)
# Define Point class class Point: def __init__(self, x=0, y=0): self.x = x self.y = y
PG = Point(GX, GY) ZERO_POINT = Point(0, 0)
# Function to multiply a point by 2 def multiply_by_2(P, p=MODULO): c = gmpy2.f_mod(3 * P.x * P.x * gmpy2.powmod(2 * P.y, -1, p), p) R = Point() R.x = gmpy2.f_mod(c * c - 2 * P.x, p) R.y = gmpy2.f_mod(c * (P.x - R.x) - P.y, p) return R
# Function to add two points def add_points(P, Q, p=MODULO): dx = Q.x - P.x dy = Q.y - P.y c = gmpy2.f_mod(dy * gmpy2.invert(dx, p), p) R = Point() R.x = gmpy2.f_mod(c * c - P.x - Q.x, p) R.y = gmpy2.f_mod(c * (P.x - R.x) - P.y, p) return R
# Function to calculate Y-coordinate from X-coordinate @lru_cache(maxsize=None) def x_to_y(X, y_parity, p=MODULO): Y = gmpy2.mpz(3) tmp = gmpy2.mpz(1)
while Y > 0: if Y % 2 == 1: tmp = gmpy2.f_mod(tmp * X, p) Y >>= 1 X = gmpy2.f_mod(X * X, p)
X = gmpy2.f_mod(tmp + 7, p)
Y = gmpy2.f_div(gmpy2.add(p, 1), 4) tmp = gmpy2.mpz(1)
while Y > 0: if Y % 2 == 1: tmp = gmpy2.f_mod(tmp * X, p) Y >>= 1 X = gmpy2.f_mod(X * X, p)
Y = tmp
if Y % 2 != y_parity: Y = gmpy2.f_mod(-Y, p)
return Y
# Function to compute a table of points def compute_point_table(): points = [PG] for k in range(255): points.append(multiply_by_2(points[k])) return points
POINTS_TABLE = compute_point_table()
# Global event to signal all processes to stop STOP_EVENT = multiprocessing.Event()
# Function to check and compare points for potential solutions def check(P, Pindex, DP_rarity, A, Ak, B, Bk): check = gmpy2.f_mod(P.x, DP_rarity) if check == 0: message = "\r[+] [Pindex]: {}".format(Pindex) messages = [] messages.append(message) output = "\033[01;33m" + ''.join(messages) + "\r" sys.stdout.write(output) sys.stdout.flush() A.append(mpz(P.x)) Ak.append(mpz(Pindex)) return comparator(A, Ak, B, Bk) else: return False
# Function to compare two sets of points and find a common point def comparator(A, Ak, B, Bk): global STOP_EVENT result = set(A).intersection(set(B))
if result: sol_kt = A.index(next(iter(result))) sol_kw = B.index(next(iter(result))) difference = Ak[sol_kt] - Bk[sol_kw] HEX = "%064x" % difference t = time.ctime() pid = os.getpid() # Get the process ID core_number = pid % cpu_count() # Calculate the CPU core number total_time = time.time() - starttime print(f"\033[32m[+] PUZZLE SOLVED: {t}, total time: {total_time:.2f} sec, Core: {core_number+1:02} \033[0m") print(f"\033[32m[+] WIF: \033[32m {HEX} \033[0m") with open("KEYFOUNDKEYFOUND.txt", "a") as file: file.write("\n\nSOLVED " + t) file.write(f"\nTotal Time: {total_time:.2f} sec") file.write("\nPrivate Key (decimal): " + str(difference)) file.write("\nPrivate Key (hex): " + HEX) file.write( "\n-------------------------------------------------------------------------------------------------------------------------------------\n" )
STOP_EVENT.set() # Set the stop event to signal all processes
# Memoization for point multiplication ECMULTIPLY_MEMO = {}
# Function to multiply a point by a scalar def ecmultiply(k, P=PG, p=MODULO): if k == 0: return ZERO_POINT elif k == 1: return P elif k % 2 == 0: if k in ECMULTIPLY_MEMO: return ECMULTIPLY_MEMO[k] else: result = ecmultiply(k/ 2, multiply_by_2(P, p), p) ECMULTIPLY_MEMO[k] = result return result else: return add_points(P, ecmultiply((k - 1)/ 2, multiply_by_2(P, p), p))
# Recursive function to multiply a point by a scalar def mulk(k, P=PG, p=MODULO): if k == 0: return ZERO_POINT elif k == 1: return P elif k % 2 == 0: return mulk(k/ 2, multiply_by_2(P, p), p) else: return add_points(P, mulk((k - 1)/ 2, multiply_by_2(P, p), p))
# Generate a list of powers of two for faster access @lru_cache(maxsize=None) def generate_powers_of_two(hop_modulo): return [mpz(1 << pw) for pw in range(hop_modulo)]
t = time.ctime() sys.stdout.write("\033[01;33m") sys.stdout.write(f"[+] [Kangaroo]: {t}" + "\n") sys.stdout.flush()
# Configuration for the puzzle puzzle = 130 compressed_public_key = "03633cbe3ec02b9401c5effa144c5b4d22f87940259634858fc7e59b1c09937852" # Puzzle 130 lower_range_limit = 2 ** (puzzle - 1) upper_range_limit = (2 ** puzzle) - 1 kangaroo_power = puzzle/ 8 Nt = Nw = (2 ** kangaroo_power/ puzzle) * puzzle + 8 DP_rarity = 8 * puzzle hop_modulo = (puzzle/ 2) + 8
# Precompute powers of two for faster access powers_of_two = generate_powers_of_two(hop_modulo)
T, t, dt = [], [], [] W, w, dw = [], [], []
if len(compressed_public_key) == 66: X = mpz(compressed_public_key[2:66], 16) Y = x_to_y(X, mpz(compressed_public_key[:2]) - 2) else: print("[error] pubkey len(66/130) invalid!")
print(f"[+] [Puzzle]: {puzzle}") print(f"[+] [Lower range limit]: {lower_range_limit}") print(f"[+] [Upper range limit]: {upper_range_limit}") print("[+] [Xcoordinate]: %064x" % X) print("[+] [Ycoordinate]: %064x" % Y)
W0 = Point(X, Y) starttime = oldtime = time.time()
Hops = 0
# Worker function for point search def search_worker( Nt, Nw, puzzle, kangaroo_power, starttime, lower_range_limit, upper_range_limit ): global STOP_EVENT pid = os.getpid() core_number = pid % cpu_count() #Random seed Config #constant_prefix = b'' #back to no constant #constant_prefix = b'\xbc\x9b\x8cd\xfc\xa1?\xcf' #Puzzle 50 seed - 10-18s constant_prefix = b'\xbc\x9b' prefix_length = len(constant_prefix) length = 8 ending_length = length - prefix_length with open("/dev/urandom", "rb") as urandom_file: ending_bytes = urandom_file.read(ending_length) random_bytes = constant_prefix + ending_bytes print(f"[+] [Core]: {core_number+1:02}, [Random seed]: {random_bytes}") random.seed(random_bytes) t = [ mpz( lower_range_limit + mpz(random.randint(0, upper_range_limit - lower_range_limit)) ) for _ in range(Nt) ] T = [mulk(ti) for ti in t] dt = [mpz(0) for _ in range(Nt)] w = [ mpz(random.randint(0, upper_range_limit - lower_range_limit)) for _ in range(Nw) ] W = [add_points(W0, mulk(wk)) for wk in w] dw = [mpz(0) for _ in range(Nw)]
Hops, Hops_old = 0, 0
oldtime = time.time() starttime = oldtime
while True: for k in range(Nt): Hops += 1 pw = T[k].x % hop_modulo dt[k] = powers_of_two[pw] solved = check(T[k], t[k], DP_rarity, T, t, W, w) if solved: STOP_EVENT.set() break t[k] = mpz(t[k]) + dt[k] # Use mpz here T[k] = add_points(POINTS_TABLE[pw], T[k])
for k in range(Nw): Hops += 1 pw = W[k].x % hop_modulo dw[k] = powers_of_two[pw] solved = check(W[k], w[k], DP_rarity, W, w, T, t) if solved: STOP_EVENT.set() break w[k] = mpz(w[k]) + dw[k] # Use mpz here W[k] = add_points(POINTS_TABLE[pw], W[k])
if STOP_EVENT.is_set(): break
# Main script if __name__ == "__main__": process_count = cpu_count() print(f"[+] [Using {process_count} CPU cores for parallel search]:")
# Create a pool of worker processes pool = Pool(process_count) results = pool.starmap( search_worker, [ ( Nt, Nw, puzzle, kangaroo_power, starttime, lower_range_limit, upper_range_limit, ) ] * process_count, ) pool.close() pool.join()
|