The L3 cache by itself is almost half of the chip.
I looked at an image of the Haswell die and appears to be less than 20%. The APU (GPU) is taking up more space on the consumer models. On the server models there is no GPU and the cache is probably a higher percentage of the die.
There is also a 64 bit multiply, which is I'm told is non-trivial. Once you combine that with your observation about Intel having a (likely persistent) process advantage (and also the inherent average unit cost advantage of a widely-used general purpose device), there just isn't much if anything left for an ASIC-maker to to work with.
So no I don't think the point is really valid. You won't be able to get thousands of times anything with a straightforward ASIC design here. There may be back doors though, we don't know. The point about lack of a clear writeup and peer review is valid.
The CPU has an inherent disadvantage in that it is designed to be a general purpose computing device so it can't be as specialized at any one computation as an ASIC can be.
This is obviously going to be true, but the scope of the task here is very different. Thousands of copies will not work.
I believe that is wrong. I suspect an ASIC can be designed that vastly outperform (at least on a power efficiency basis) and one of the reasons is the algorithm is so complex, thus it probably has many ways to be optimized with specific circuitry instead of generalized circuitry. My point is isolating a simpler ("enveloped") instruction such as aesinc would be a superior strategy (and embrace USB pluggable ASICs and get them spread out to the consumer).
Also I had noted (find my post in my thread a couple of months ago) that the way the AES is incorrectly employed as a random oracle (as the index to lookup in the memory table), the algorithm is very likely subject to some reduced solution space. This is perhaps Claymore's advantage (I could probably figure it out if I was inclined to spend sufficient time on it).
There is no cryptographic analysis of the hash. It might have impossible images, collisions, etc..