<<  >> (p.4)
    Author Topic: Pollard's kangaroo ECDLP solver  (Read 62395 times)
    arulbero
    Legendary
    *
    Offline Offline

    Activity: 2023
    Merit: 2267


    View Profile
    May 03, 2020, 03:24:11 PM
    Last edit: May 03, 2020, 06:28:55 PM by arulbero
     #61

    It works with dp=0 because random walk are not really important, they just generate random sequence, and you don't care about the path, so it correctly solve the key (the distance is also stored in the hastable) but with dp>0 paths are of course important.
    You're right there is probably a bug with my storage of symmetric point.

    I have explained the bug,
    the bug is not in the storage, is in the way you generate the next step of each sequence:

    only symmetric jumps (+-G, +-2G, +-4G, +- 17G) lead a tame and a wild from 2 symmetric points (first collision) to other 2 symmetric points until they meet the 'same' 2 DPs (other 2 symmetric points).

    If we call 2 symmetric point (a collision) T and W=-T , and DP > 0, the next step produces 2 different points:

    T,   W=-T                                                                ->        T1,  W1        ->   Tk = DP,    Wk != Tk   Wk is not a DP!!

    (x,y),  (x,-y)                                                           -> (x1,y1),  (x1',y1') ->    (xk, yk),  (xk',yk')

    same x -> same jump = +s*G -> different points                x1 != x1'                    xk !=xk'

    if T and W are 2 symmetric points, T1=T+s*G and W1=-T+s*G are not!!!

    because you use +s*G for T and W, even if they have 2 opposite y-coordinates!

    You have to use +s*G for T and -s*G for W (or viceversa)!!

    In this way:

    T,    W=-T                                                                       ->     T1=T+s*G , W1=-T-s*G    and T1 = -W1 !
    (x,y),  (x,-y)                                                                    ->          (x1,y1)  ,     (x1,-y1)
    same x -> opposite jumps = +-s*G -> symmetric points                        x1 = x1  
Page 3
Viewing Page: 4